Principal component analysis for clustering gene expression data
نویسندگان
چکیده
منابع مشابه
Principal component analysis for clustering gene expression data
MOTIVATION There is a great need to develop analytical methodology to analyze and to exploit the information contained in gene expression data. Because of the large number of genes and the complexity of biological networks, clustering is a useful exploratory technique for analysis of gene expression data. Other classical techniques, such as principal component analysis (PCA), have also been app...
متن کاملAn empirical study on Principal Component Analysis for clustering gene expression data
There is a great need to develop analytical methodology to analyze and to exploit the information contained in gene expression data. Because of the large number of genes and the complexity of biological networks, clustering is a useful exploratory technique for analysis of gene expression data. Other classical techniques, such as principal component analysis (PCA), have also been applied to ana...
متن کاملGene Expression Data Classification With Kernel Principal Component Analysis
One important feature of the gene expression data is that the number of genes M far exceeds the number of samples N. Standard statistical methods do not work well when N < M. Development of new methodologies or modification of existing methodologies is needed for the analysis of the microarray data. In this paper, we propose a novel analysis procedure for classifying the gene expression data. T...
متن کاملPrivacy Preserving Principal Component Analysis Clustering for Distributed Heterogeneous Gene Expression Datasets
In this paper, we present approaches to perform principal component analysis (PCA) clustering for distributed heterogeneous genomic datasets with privacy protection. The approaches allow data providers to collaborate together to identify gene profiles from a global viewpoint, and at the same time, protect the sensitive genomic data from possible privacy leaks. We then further develop a framewor...
متن کاملA random version of principal component analysis in data clustering
Principal component analysis (PCA) is a widespread technique for data analysis that relies on the covariance/correlation matrix of the analyzed data. However, to properly work with high-dimensional data sets, PCA poses severe mathematical constraints on the minimum number of different replicates, or samples, that must be included in the analysis. Generally, improper sampling is due to a small n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bioinformatics
سال: 2001
ISSN: 1367-4803,1460-2059
DOI: 10.1093/bioinformatics/17.9.763